Discussion of

A Macroeconomic Model of Central Bank Digital Currency

by Pascal Paul, Mauricio Ulate and Jing Cynthia Wu

Elia Moracci

Bank of Italy

Economics of Payments XIV - Rome, 19 September 2025 Session V: The Macroeconomics of Digital Currencies and Payments

This paper

- ◆ Studies the introduction of a central bank digital currency (CBDC) using a rich New Keynesian DSGE model
- Assesses its welfare impact
 - in economies characterized by different steady-state policy rates
 - under different CBDC remuneration schemes
- Proposes an optimal rule-of-thumb for CBDC remuneration.
- Evaluates how MP transmission is affected by the presence of a CBDC.

CBDC introduction: in a nutshell

• Introduce CBDC by shifting its remuneration from -100% to \approx 0%.

♦ Key trade-off:

- ✔ Benefits: Consumers gain from additional liquidity services and reduced bank deposit market power
- Costs: Banks' intermediation capacity is reduced, possibly affecting lending

Results

CBDC reduces deposit market power

■ Banks respond to CBDC competition by narrowing deposit spreads.

Welfare gains from CBDC introduction

□ Households benefit from improved liquidity and higher deposit returns, especially in low interest rate environments (where a non-remunerated CBDC is most used).

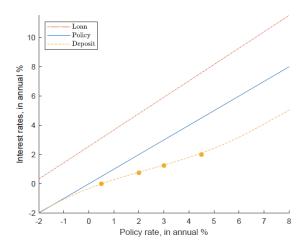
3 Optimal CBDC rate rule

□ Rule of thumb $i_{cbdc} = \max\{0\%, i-1\%\}$ strikes the balance between increased liquidity benefits and moderate bank disintermediation. As i rises, i_{cbdc} needs to rise to curtail bank market power.

Disintermediation risk is small

- US: CBDC reduces bank lending, but welfare gains dominate in US unless CBDC is overly attractive
- ☐ EA: slightly lower welfare gains due to higher disintermediation

Thoughts on the paper - I


- Nice static framework to build intuition for the main trade-off.
 It transparently shows, with minimal structure
 - \square how changes in the **policy rate** i affect **deposit markdowns** $i-i^d$ deposit channel of MP (Drechsler, Savov, and Schnabl, 2017)
 - \Box how introducing a CBDC affects i^d and $i i^d$
 - lacktriangle how these changes vary according to the *level* of i
- Very rich and realistic NK DSGE setup that includes
 - monopolistic banks that issue deposits/extend loans and are subject to capital requirements.
 - $\mathsf{CBDC} \to \mathsf{profitability} \to \mathsf{equity} \to \mathsf{loan/equity} \to \mathsf{credit} \ \mathsf{markets}$
 - □ sticky prices (Calvo), business cycle fluctuations and MP responses

Thoughts on the paper - II

- ◆ Credible calibration of many parameters this is a HUGE model.
- ◆ Generates realistic loan/deposit spreads as a function of *i*.

Thoughts on the paper - II

- Credible calibration of many parameters this is a HUGE model.
- Generates realistic loan/deposit spreads as a function of i.

Substitution patterns between cash, deposits and CBDC

2 Stocks versus flows: CBDC holdings vs. CBDC usage

- ◆ Card, CBDC and deposit shares in the model essentially depend on
 - $lue{}$ returns on cash (0), CBDC ($i^{CBDC} \simeq 0$) and deposits (i^D)
 - □ parameters of the liquidity aggregator from Balloch and Koby (2023), extended to include CBDC

$$\mathcal{L}_{t} = \left(\gamma_{\textit{m}} \, \textit{m}_{t}^{\frac{\theta+1}{\theta}} + \gamma_{\textit{d}} \, \textit{d}_{t}^{\frac{\theta+1}{\theta}} + \gamma_{\textit{cbdc}} \, \textit{cbdc}_{t}^{\frac{\theta+1}{\theta}}\right)^{\frac{\theta}{\theta+1}},$$

$$\mathcal{L}_t = \left(\gamma_m \, m_t^{rac{ heta+1}{ heta}} + \gamma_d \, d_t^{rac{ heta+1}{ heta}} + \gamma_{cbdc} \, cbdc_t^{rac{ heta+1}{ heta}}
ight)^{rac{ heta}{ heta+1}}$$

- Degree of substitutability θ estimated to be very high (\approx 550) and assumed identical for CBDC-cash and CBDC-deposits.
 - This may or may not be accurate: cash-like vs deposit-like CBDC. (Nocciola and Zamora-Pérez, 2024)

Feature	Cash	Deposits	CBDC
Widespread acceptance	~	X	~
Interest bearing	×	✓	×
Offline usability	~	×	~
Anonymity/privacy	~	×	V
Peer-to-peer transfers	~	×	V
Budgeting	X	×	V
Theft/security protection	X	✓	~

$$\mathcal{L}_{t} = \left(\gamma_{\textit{m}} \, \textit{m}_{t}^{\frac{\theta+1}{\theta}} + \gamma_{\textit{d}} \, \textit{d}_{t}^{\frac{\theta+1}{\theta}} + \gamma_{\textit{cbdc}} \, \textit{cbdc}_{t}^{\frac{\theta+1}{\theta}}\right)^{\frac{\theta}{\theta+1}}$$

- Degree of substitutability θ estimated to be very high (\approx 550) and assumed identical for CBDC-cash and CBDC-deposits.
 - Could a nested CES design resembles more closely the actual post-CBDC configuration of liquidity services?

$$\begin{split} & L_t^i = \left[\gamma_m \cdot m_t^{\frac{\theta_i + 1}{\theta_i}} + \gamma_{cbdc}^i \cdot cbdc_t^{\frac{\theta_i + 1}{\theta_i}} \right]^{\frac{\theta_i}{\theta_i + 1}}, \quad i \in \{\textit{cash}, \textit{dep}\} \\ & \mathcal{L}_t = \left[\alpha_{\textit{cash}} \cdot \left(L_t^{\textit{cash}} \right)^{\frac{\eta + 1}{\eta}} + \alpha_{\textit{dep}} \cdot \left(L_t^{\textit{dep}} \right)^{\frac{\eta + 1}{\eta}} \right]^{\frac{\eta}{\eta + 1}} \end{split}$$

- ☐ Would alternative substitution patterns affect the results?
- Would a cash-like CBDC generate less disintermediation?

$$\mathcal{L}_{t} = \left(\gamma_{\textit{m}} \, \textit{m}_{t}^{\frac{\theta+1}{ heta}} + \gamma_{\textit{d}} \, \textit{d}_{t}^{\frac{\theta+1}{ heta}} + \gamma_{\textit{cbdc}} \, \textit{cbdc}_{t}^{\frac{\theta+1}{ heta}}
ight)^{rac{ heta}{ heta+1}}$$

- **2** Calibration of γ_m, γ_d and γ_{cbdc} is crucial
 - □ Set $\gamma_m = \gamma_{cbdc}$ exploiting hypothetical survey questions asked to a sample of German households by Bidder, Jackson, and Rottner (2024). "Please assume that you have a digital euro account that you can use to hold digital euro. You would receive no interest on this digital euro account. How much of the € 1,000 per month would you now deposit into your digital euro account, hold as cash, deposit into your regular current account at your bank, or invest in other financial instruments? "

$$\mathcal{L}_{t} = \left(\gamma_{\textit{m}} \, \textit{m}_{t}^{\frac{\theta+1}{\theta}} + \gamma_{\textit{d}} \, \textit{d}_{t}^{\frac{\theta+1}{\theta}} + \gamma_{\textit{cbdc}} \, \textit{cbdc}_{t}^{\frac{\theta+1}{\theta}}\right)^{\frac{\theta}{\theta+1}}$$

- **2** Calibration of γ_m, γ_d and γ_{cbdc} is crucial
 - □ $\gamma_m = \gamma_{cbdc}$ to reflect that in the subsample of potential adopters the cash and D€ share were roughly equal. Does this imply that $M_t/Y_t = CBDC_t/Y_t$ after the CBDC is introduced?
 - \blacksquare Imperfect adoption (e.g. due to inertia/switching costs) and acceptance of CBDC should be captured by γ_{CBDC}
 - ☐ Transitional dynamics related to staggered technology adoption may play a role (Alvarez et al., 2023)
 - \square Can the introduction of a CBDC lower γ_m (merchants stop accepting cash because they prefer CBDC?)?

2. CBDC holdings vs. CBDC usage

- Focus of the model is on CBDC holdings (stocks)
- But CBDC "success" also depends on its usage as a means of payments (flows)
- ◆ A missing ingredient: velocity of money! Not easy to incorporate in a large-scale DSGE model...
- CBDC may have very high velocity!
 - Programmable transfers from deposit account, reverse waterfall functionality
 - Exploit CBDC advantages as a payment method without holding a large stock (to avoid high opportunity costs in the presence of no remuneration)
 - → CBDC could provide substantial liquidity/payment services with even less disintermediation: it depends on its design.

Taking stock

- ◆ A great paper with a rich and realistic model
- Nice and credible quantitative evaluation of the trade-offs involved in CBDC introduction
- Timely and relevant analysis of the optimal CBDC remuneration
- ◆ Some words of caution: model has to abstract from
 - payment method and cash management decisions
 - impefect acceptance of payment methods
 - ☐ dynamic adoption choices in the presence of network effects
- ◆ All of these features of the problem make the outcome more uncertain and the nuances of CBDC design more relevant

Taking stock

- ◆ A great paper with a rich and realistic model
- Nice and credible quantitative evaluation of the trade-offs involved in CBDC introduction
- Timely and relevant analysis of the optimal CBDC remuneration
- ◆ Some words of caution: model has to abstract from
 - payment method and cash management decisions
 - impefect acceptance of payment methods
 - ☐ dynamic adoption choices in the presence of network effects
- ◆ All of these features of the problem make the outcome more uncertain and the nuances of CBDC design more relevant

References I

- Alvarez, Fernando E et al. (2023). Strategic complementarities in a dynamic model of technology adoption: P2p digital payments.

 Tech. rep. National Bureau of Economic Research.
- Balloch, Cynthia and Yann Koby (2023). Low rates and bank loan supply: Theory and evidence from japan. LSE Financial Markets Group.
- Bidder, Rhys, Timothy P Jackson, and Matthias Rottner (2024). CBDC and banks: Disintermediating fast and slow. 15/2024. Deutsche Bundesbank Discussion Paper.
- Drechsler, Itamar, Alexi Savov, and Philipp Schnabl (Nov. 2017). "The Deposits Channel of Monetary Policy". In: *Quarterly Journal of Economics* 132.4, pp. 1819–1876. DOI: 10.1093/qje/qjx011. URL: https://doi.org/10.1093/qje/qjx011.
- Nocciola, Luca and Alejandro Zamora-Pérez (2024). *Transactional demand for central bank digital currency*. 2926. ECB Working Paper.