

Discussion of

Dynamic consumer cash inventory model

by K. P. Huynh, O. Shcherbakov and A. Stenzel

Elia Moracci*

Bank of Italy

Workshop on currency research - 16th EURECA meeting
ECB, 11 December 2025

Session III - Payment behaviour and market structure

* The views expressed here do not necessarily represent those of the Bank of Italy.

This paper

- ◆ Builds a dynamic structural model of cash management and payment choices with random expenditures
- ◆ Estimates the model on data from the Canadian Methods-of-Payment survey (MOP) for the years 2009, 2013 and 2017
 - ❑ repeated cross section of Canadian households, around 5000 in total
 - ❑ rich, individual-level information on cash/non-cash purchases, withdrawals (size and frequency) and cash holdings
- ◆ **Findings:**
 - ❑ heterogeneous estimation is valuable
 - ❑ a worsening of the cash infrastructure has a idiosyncratic (bimodal) effect on payment and withdrawal choices
- ◆ **Policy relevance:** some consumers (especially younger and poorer ones) more damaged by bank closures

Literature and contribution

- ◆ Paper adds to a growing literature on payment method choices that uses inventory models.
 - seminal cash management model
(Baumöl, 1952; Tobin, 1956)
 - + payment choices
(Whitesell, 1989; Alvarez and Lippi, 2017)
 - + random expenditures
(Briglevics, Schuh, et al., 2020; Lippi and Moracci, 2025)
- ◆ **Main contributions:**
 - a tractable way to embed payments in a stochastic inventory model
 - heterogeneity in withdrawal costs through an **ATM-density** measure
 - estimating **distributions of parameters** instead of values
 - counterfactuals at the household level

The model

Key ingredients

- ◆ Household i needs to finance expenditure $s_{i,t}$ that is stochastic and revealed at the beginning of day t . Need to decide
 - ❑ cash withdrawal today $w_{i,t}$
 - ❑ cash expenditure $c_{i,t} \leq \min \{s_{i,t}, h_{i,t-1} + w_{i,t}\}$, where $h_{i,t-1}$ are cash holdings carried forward from $t-1$
- ◆ Clearly, current choices impact end-of-period cash holdings $h_{i,t}$ that enter future expected utility (daily discount β)
- ◆ Households
 - ❑ derive utility $u(c_{i,t}) = \alpha \ln(1 + c_{i,t}) + (1 - \alpha) \ln(1 + s_{i,t} - c_{i,t})$
 - ❑ face cash holding costs $\gamma h_{i,t}$
 - ❑ face withdrawal costs $F \ln(1 + d_i)$
- ◆ Estimate $\{\alpha, \gamma, F\}$ via GMM: representative vs heterogeneous

Results

- ◆ **Model fit:** individual-level estimation improves fit to observed moments wrt (1) representative estimation; (2) estimation by subgroups
- ◆ **Parameter estimates:** stark differences between representative vs heterogeneous estimation
 - withdrawal costs F have increased over time
 - cash preferences α of low income consumers have risen as well
- ◆ **Impact of changes in cash infrastructure:** bimodal response to a 25% increase in withdrawal costs/distance
 - a quarter of consumers abandon cash, with sizeable welfare losses
 - other consumers withdraw more to economize on costly adjustments

Thoughts on the paper

- ◆ A nice, novel model combining payment choices and cash inventory management by households in a “tractable” fashion
 - predictions on withdrawal frequency/size, average cash holdings and cash/card expenditure shares
- ◆ Clever use of individual-level data to estimate full distributions of parameters and household-specific counterfactuals
- ◆ Policy-relevant exercise on the effect of a worsening cash infrastructure
 - enables to speak about consequences for any subgroup of the population you have in mind

Some comments

① Frictions

- ❑ uncertainty/lumpiness
- ❑ imperfect acceptance

② Insights on the model's solution

③ Smaller points

My comments

1. Frictions - uncertainty/large payments

- ◆ In the model, households know s_{it} at the beginning of the day
only source of uncertainty is “how much will I spend tomorrow?”
 - HHs always have “enough” cash to perform their transactions
→ no *cash shortfalls*
 - they can split daily expenditure $s_{i,t}$ in cash and non-cash as they like
→ no *lumpy payments*
- ◆ In practice,
 - some payments are unexpected
how many? how unexpected? difficult to say
 - households often don't have enough cash to meet their next payment
for euro area $\simeq 16\%$ of transactions in 2024
 - sometimes all daily expenditure comes from a large unique payment

My comments

1. Frictions - acceptance

- ◆ In the model, all payments can be settled using cash or non-cash methods
 - HHs choose the share of cash/non-cash payments $c_{i,t}/s_{i,t} \in [0, 1]$
- ◆ In other work ([Engert, Shcherbakov, and Stenzel, 2024](#)) you report that around 7% of Canadian merchants accepted only cash in 2023. for euro area $\simeq 11\%$ of transactions in 2024 were *forced cash transactions*
 - can such constraints be integrated in the framework?
by imposing a floor on $c_{i,t}/s_{i,t}$, for instance?
 - is cash universally accepted?
in euro area, only 95% of transactions can be settled using cash
does a decrease in acceptance have similar effects to a rise in F ?

My comments

2. Insights on the model's solution

- ◆ Properties of the model's solution (withdrawal and payment policy functions) could be discussed in greater depth
- ◆ Some figures on the shape of $\mathbb{E}_{s_{i,t+1}}[V(h_{i,t})]$ would be helpful and better connect the paper with the literature
 - ❑ is the withdrawal policy of the (s, S) (trigger-target) form?
- ◆ How do payment choices ($c_{i,t}/s_{i,t}$) depend on cash holdings $h_{i,t-1}$ and expenditure size $s_{i,t}$?
 - ❑ does the model match the stylized facts that cash usage increases as h rises and as s fall?
 - ❑ does card usage rise when $s \rightarrow h$, as in [Lippi and Moracci \(2025\)](#)?
- ◆ Comparative statics: how does d_i affect inventory/payment choices

My comments

3. Smaller points

- ◆ **Parameters/welfare in monetary units.** The per-period utility contains $\gamma h_{i,t}$, which is measured in CAD. Can the estimated parameters/average costs/welfare losses be restated in CAD?
- ◆ **Urban/rural comparison.** Estimated per-distance-unit withdrawal costs F are higher in rural locations (Table 7): is this compensated by a higher average d_i ?
- ◆ **Opportunity cost of time.** Given that you have income data, I would love to see a scatter of the estimated individual F and the hourly wage.
- ◆ **Concavity of shoeleather costs.** The BT *shoeleather cost* is given by $F \ln(1 + d_i)$ - is concavity appropriate here?
- ◆ **Value vs volume?**

Taking stock

- ◆ A very promising paper, which provides a **completely novel way** to incorporate payment choices into dynamic inventory models
- ◆ A key insight from the model solution is exploited to reduce dimensionality of state space and enable **individual-level estimation**
- ◆ Highly policy relevant **application**: heterogeneous effects and welfare costs of a (possibly) weakening cash infrastructure
- ❑ A few minor adjustments can make the paper
 - ❑ (in general) easier to follow
 - ❑ (on the theory side) more comparable to other models of cash management with nontrivial payment choices
 - ❑ (on the applied side) a wonderful tool to explore the heterogeneous welfare implications (in \$) of changes in the cash infrastructure (... and possibly more!)

References I

- Alvarez, F. and F. Lippi (2017). "Cash burns: An inventory model with a cash-credit choice". In: *Journal of Monetary Economics* 90, pp. 99–112.
- Baumöl, W. J. (1952). "The transactions demand for cash: An inventory theoretic approach". In: *Quarterly Journal of Economics* 66.4, pp. 545–556.
- Briglevics, T., S. Schuh, et al. (2020). *This Is What's in Your Wallet... and Here's How You Use It*. Tech. rep. Department of Economics, West Virginia University.
- Engert, W., O. Shcherbakov, and A. Stenzel (2024). *CBDC in the market for payments at the point of sale: Equilibrium impact and incumbent responses*. Tech. rep. Bank of Canada Staff Working Paper.

References II

- Lippi, F. and E. Moracci (2025). "Cash or card? a structural model of payment choices". In: *CEPR Discussion Paper No. 19752*.
- Tobin, J. (1956). "The interest-elasticity of transactions demand for cash". In: *The review of Economics and Statistics* 38.3, pp. 241–247.
- Whitesell, W. C. (1989). "The demand for currency versus debitible accounts: note". In: *Journal of Money, Credit and Banking* 21.2, pp. 246–251.